2025年9月4日木曜日

ケーキを食べる

 次の問題を提示します。

「たかし君はケーキが大好きです。たくさん食べたいたかし君は,3種類のケーキのどれを選ぶか迷っています」

板書にあるような3種類のケーキの箱を提示します。すると,子どもの声がつながります。

「たくさんってどういうこと?」

「『たくさん食べたい』と書いてあるから,ケーキの大きさのことでしょ」

「それなら①が大きい」

「同じじゃない?」

「③が大きいよ」

「隙間で考えたら,③は隙間の数が多いからケーキの面積も小さくなる」

「①の隙間は大きくて,③の隙間は小さい」

「③は真ん中の方にも隙間がある」

隙間の視点が生まれてきました。子どもの予想にはズレが生まれました。そこで,計算で面積を求めます。

結果は,いずれも282.6㎠で等しくなりました。たかし君はどのケーキを選んでも,たくさん食べられるのです。この結果から,「箱の大きさが同じなら,同じ面積になる」という事実が見えてきます。

すると,次の声があがります。

「でも,こんな形のケーキになっても面積は同じになるの?」

正方形の1本の対角線上に最大値になる円を2個入れるという考えです。このように作図を行うと,それ以上は同じサイズの円は入る余地はなさそうです。果たして,この場合もケーキの面積は等しくなるのでしょうか?

実際に作図を行い,確かめます。ところが,対角線上に正方形に内接する最大値になる円を作図するのに,かなりの苦労をしました。最終的に半径1.7㎝に円がぴったりと入りそうだということが見えてきました。

この長さで面積を求めると,結果は18.1492㎠となります。先ほどよりも小さくなりました。この事実から,縦横の個数が2乗できる場合のケーキの詰め方の時のみ,面積が等しくなることが見えてきました。



2025年9月1日月曜日

円の面積を求める!

 「円の面積は正十六角形よりも本当に大きいのでしょうか」

前回の続きです。周りの辺の長さ32㎝の図形の面積を考えていました。

まずは,正十六角形の面積を確認します。

(32÷16)×5÷2×16=80(㎠)

すると「16は意味がない」と声があがります。「÷16」と「×16」で相殺するので,この部分の式が省略できるという声です。すると,先ほどの式は次のように変身できます。

32×5÷2

さらに,この式を言葉の式に置き換えると,次のように変わります。

周りの長さ×高さ÷2

この式を見た子どもから,「短縮した」「すっきりした」と声があがります。

次は,円の面積です。「カットして求めたらいい」と声があがります。円の内部をピザのように分割していくアイディアです。このアイディアを巡って声が続きます。

「底辺部分が少しカーブしている」

「小さくしたら,ほぼ直線だよ」

この両者の議論がしばらく続きます。すると「だったら,あれが使える」という声があがります。何かに気づいたのです。「あれ」とはなんでしょうか。

「あれ」とは,先ほどの「周りの長さ×高さ÷2」の言葉の式です。ここに円の条件を当てはめるという考です。「周りの長さ」は「円周」,「高さ」は「半径」に置き換えられます。すると,32×5.1÷2=81.6(㎠)と計算でも求められます。計算上は円の面積が大きいことが見えてきました。

円の求積の場合,先ほどの言葉の式は次のように置き換えられます。

①円周×半径÷2

すると「短くなった」と声が上がります。しかし,「円周って直径×3.14」の声もあがります。この声から式を変形していくと,次のようになります。

直径×3.14×半径÷2=②半径×半径×3.14

シンプルな①②の式で,計算上は面積が求められそうです。しかし,「やっぱり確かめないと分からない」と声が上がります。そこで,円をピザ状に分割して並べ替えることにしました。

結果は,平行四辺形に変身することができました。言葉の式に置き換えると次のようになります。

円周の半分×半径=直径×3.14÷2×半径=半径×半径×3.14

図の並び替えからも,先ほどの同じ式が見えてきました。