2019年10月19日土曜日

1年生の9+4

1年生に次の問題を提示します。
「どんぐりを,K君が9個,S子さんが4個とりました。どんぐりは合わせて何個ですか」

式は簡単に「9+4」と立式できると考えていました。しかし,1年生はそう簡単に授業を先へと進めることを許してはくれません。「絶対に9-4だ」という声が聞こえてきます。なぜ,ここでひき算の式?子どもの論理を理解できますか。

「K君が9個どんぐりをとりました。そのK君のとったどんぐりから4個とった」と考えたのです。1年生は手ごわいですね。

さて,問題場面の共通理解を図ります。その後,「答えは出せるかな」と投げかけます。子どもたちは,「できるよ」「式もかけるよ」「図も描けるよ」と声があがります。

図で考えた子どもたちの思いを読解します。右の図を板書します。9+4の図になっていますが,これも1年生はすぐには全員が理解できません。時間をかけて共有していきます。

その中で,「10の固まりを作る」と説明がありました。そこで,「なんで10の固まりを作ったの?」と問います。

「だって,9のままだとわかりにくいよ。10の固まりだとわかりやすい」
「10と3なら,すぐに13ってわかる」
「10月11日の勉強で,6+4+3の計算をした時も,6+4=10にしてから,10+3をすると簡単だったよ」
「10+□ならすぐに答えがわかるよ」

子どもたちは,既習の3口の計算で10の固まりを作ったことと今回の学習を関連付けて考えたのです。10の固まりで考えるよさを,別の単元でも子どもたちは実感するだけではなく,その関連性を具体的に説明することもできたのです。

1年生も,複数単元にまたがる価値ある見方・考え方が存在することやその有効性に気付くことができるのです。

かけ算の筆算は必要?

3年生の子どもたちに,「1個21円のお菓子を3個買いました。合計はいくらですか」という問題場面を提示します。立式はすぐに21×3とできます。答えも,全員が求められます。

素直に考えれば,21+21+21で求められます。しかし,この求め方に対しては,「かける数が3の時はいいけど,×9とかに大きくなったら大変だよ」と声があがります。具体的事例をあげて,たし算方式の限界を指摘する声です。

かけられる数の21を20と1に分解する考えが生まれてきます。20×3と1×3の計算を行い,それぞれの答えをたすのです。低学年でサクランボ計算などで,位毎に分ける計算を経験しています。その時の見方・考え方が,ここでも生きてきます。
ところが,20×3の計算を巡ってズレが生まれます。(何十)×(一位数)の計算は,この段階では未習です。

「20×3は習ってないからできない」
「簡単だよ。20の0をとって2×3=6でしょ。6にさっきとった0をつければ60になるよ」
「0をつけるって?」
「だから,6に0をたすんだよ」
「6に0をたしても6だよ」
「そうだよ,6+0=6だ」
「だから,たすんじゃなくてつけるの」
「つける・・・?」

(何十)×(一位数)の答えの求め方を形式的に先行学習している子どもによくみられる説明です。「0をつける」という説明は算数にはありません。また,国語的にも誤った表現です。その言葉の意味が理解できない子どもがいるのは,きわめて自然な姿です。この場面は,「0をつける」が理解できない子どもに寄り添い,ていねいに展開していきます。
子どもたちに,「0をつけるってどういうことなの?」と尋ねます。形式だけを理解している子どもは,説明に行き詰ります。一方,素直に考える子どもは別のアプローチをしてきます。

「20×3を10円玉で考えたらどうかな。20円は10円玉2枚でしょ」
「そうか。10円玉2枚なら2×3=6だね」
「6は10円玉が6枚。でも,本当はその10倍だから6×10=60円だ」
「20のままでは計算できないから,20÷10=2と考えるんだね。2×3=6。でも,さっき10でわったから,本当の答えにするために10倍するってことだ」

これらの考え方は,形式を知らない子どもの方がすぐに理解できる傾向が高い事実があります。これからの算数で大切なことは,答えを出すことではなく,答えを導き出すための論理を鍛えることです。20円を10円玉に置き換えるような考え方が大切なのです。

さて,さくらんぼ算のように位毎に分けることで,二位数のかけ算が計算できることが見えてきました。21×3以外の計算も,この求め方で答えを求めることができました。「かけ算は簡単」と子どもたちは考え始めています。

そんな子どもたちに,「もうかけ算は大丈夫だね?」と投げかけます。子どもたちは,元気に「大丈夫」と答えます。それと同時に「百の位でも大丈夫」という声も続きます。子ども自らが計算範囲を拡張してきたのです。このような見方・考え方ができることも大切です。

その後,百の位のかけ算も子どもたちは実験してみます。これも,先ほどと同様に位毎に分けることで計算できるのです。もう,こうなると筆算を今さら使う必要感は子どもたちにはありません。なぜなら,筆算で行っている計算手続きと同じことを,子どもたちは位分け計算で行っているからです。早い段階で筆算の形式を教えるのでなく,筆算と同じ考え方を子どもたちに十分に浸らせることも大切な授業創りの視点です。



2019年10月17日木曜日

人生の夢へ向かって羽ばたこう!

私の母校,新潟県立佐渡高校で全校生徒を対象とした講演会を行いました。高校生相手の講演は初めてです。いろいろ考えた結果,算数の授業を45分ほど行い,15分は講演としました。

算数授業は,私が小学6年生に行った「アートギャラリーの定理」と呼ばれる監視カメラの台数を考える内容です。この素材は,もともとは大学数学でも取り上げられる内容です。高校生も頭を悩ませながら取り組んでくれました。うまくいかなくなると,すぐに近くの友だちと相談する姿や,正しい図形が発見できるとニコニコと喜ぶ姿は小学生と同じでした。高校生もとても素直でかわいいですね。

後半は,学歴社会はすでに崩壊している現実や,社会に出てから活躍する人の能力と大学の学歴は全く相関関係がないことを,日本の社長が選ぶベスト社長に選ばれたことがある永守重信会長の日本電産での事例を紹介しながら話しました。
しかし,学歴社会が崩壊したからといって,学生時代をだらだらと過ごしてもよいのではありません。最終的に社会で活躍する人には,「グリット」と呼ばれる共通の力が身に付いていることがアメリカでの研究で明らかとなりました。その力をこれからの人生の夢を実現するために身に着けてほしいことを述べて講演を締めくくりました。

佐渡高校生,本当に真剣に,かつ楽しく授業と講演に参加してくれました。頼もしき後輩の姿にうれしくなりました。佐渡高校生のみなさん,人生の夢に向かってグリットの力をつけて羽ばたいてくださいね!

2019年10月8日火曜日

2020年1月の講座案内

まだ少し早いですが,2020年1月に開催予定の講座をお知らせします。

1月18日(土) 教科書活用セミナー(午後)
         会場:大阪府吹田市勤労者会館
1月25日(土) 冬の先生応援プロジェクト(1日)
         会場:大阪府吹田市 大和大学(JR吹田駅前)
         講師:田中博史(教師人塾),木下幸夫(関西学院大初等部)
            樋口万太郎(京都教育大附属小)

詳細はまだ未定です。決まりましたらお知らせします。参加ご希望の方は,日程をあけておいてくださいね!

10月16日は佐渡高校講演会

10月16日,新潟県立佐渡高校の講演会に登場します。佐渡高校は私の母校です。大学時代に佐渡高校の文化祭に遊びに行って以来の訪問になります。本当に久しぶりの訪問です。佐渡高校の教室の窓から見える真野湾の海の風景や,大佐渡山地の山並みの美しさは感動ものです。日本の多くの学校をこれまでに訪問してきましたが,佐渡高校から見える風景は全国屈指ですね。

そんな素敵な佐渡高校で行う講演テーマは,「NEW TYPEの時代に必要な力」です。単なる講演では高校生も飽きてしまうかもしれないので,高校生でも愉しめる算数授業を行おうと考えています。

本講演会は保護者の方も参加可能です。佐渡高校にお子さんが在学されている保護者の方でご興味のある方は,是非,ご参加ください。お待ちしています。

1年「3口の計算」での素直な子どもの疑問

1年生の子どもたちに次の問題を提示します。
「バスに10人乗っていました。バス停で6人降りました。次のバス停で3人乗ってきました。バスには何人乗っていますか」

これまでに子どもたちは,3口のたし算の学習は終わっています。その経験から,「式にできるよ」「図も描けるよ」と声をあげます。式や図に表現することを教師から提示するのではなく,式や図にしたくなる思いを引き出すことが大切です。
子どもたちは,ノートに式や図をかいていきます。しばらくした後,答えを確認します。

答えは全員が7人と求めました。そこで,「本当に7人なの?」と尋ねます。子どもたちは,「だから…」と言って7人になる理由を説明していきます。
多くの子どもたちは,前時までの3口のたしざんの学習を生かして「10-6+3」の式を発表します。問題文と式が対応していることを確認します。

ところがW子が,「その式はおかしい」と声をあげます。その理由を聞いていきます。
「だってね,6+3を先に計算するでしょ。答えは9。10から9をひくと1になるから答えが違うからおかしい」

3口のたしざんは,計算の順序を変えても答えは変わりませんでした。ところが,今回の式は計算の順番を変えると答えが異なります。W子は3口のたしざんでの考え方を,今回の計算にも当てはめて「答えが同じになるはずだ」と考えたのです。ところが順番を変えて計算すると答えは異なります。そこに違和感を抱いたのです。W子の違和感を聞いた子どもたちの中には,「10-6+3」と立式してもいいのか不安になった子どももいます。

W子の呟きをもとに,「10-6+3」の立式自体が正しいのかどうかが新たな問いとなりました。「6+3を先に計算すると,答えが変になるからだめだよ」などの発表が続きます。最終的に,立式に不安を抱いていた子どもたちが納得したのは,次の説明でした。

「10月4日の勉強で,7+3+4をやったでしょ。計算の順番を変えると,お話が変わるからだめだと勉強したでしょ。だから,この問題も順番を変えたらだめだよ」
子どもたちは,一斉に10月4日のノートを開きます。この姿,1年生ならがすごいですね。さらに,次の説明が続きます。
「6+3を先に計算すると,バスに6人乗っていました。バス停で3人乗ってきました。次のバス停で10人降りました…? 問題が変わっちゃう」

3口のたし算の学習とつなげていくことで,計算の順序と問題文の関係を改めて見直すことができました。子どもから生まれた素直な疑問の声を取り上げ,じっくりと考えていくことで,子どもたちが燃えた1時間ともなりました。

2019年10月2日水曜日

大きさくらべ(1年生)

1年生に「大きさくらべ」の単元があります。長さ,広さ,水のかさ,箱の大きさを比べる学習です。1年生ですので,いずれも任意単位いくつ分で大きさを比べるよさに気づくことが目標です。
例えば,長さを比べる学習では,クラス全員が同じブロックを並べて「ブロック9個分」などと長さを表現していきます。

箱の大きさ比べを行いました。最初は,見るからに大きさが異なる2つの箱を提示します。「どちらの箱の中身が大きいかな」と投げかけます。子どもたちは,「重ねれば分かる」と声をあげます。大きな箱の中に小さな箱を入れることで,大きさの違いが一目瞭然となります。「重ねれば分かるんだね」と子どもたちの発想を褒めます。

次に,大きさが似ている2つの箱を提示します。子どもからは「重ねればいい」と声があがります。大きさが似ているため,どちらをどちらに重ねてみても,互いにはみ出してしまいます。従って,重ねる方法ではうまく大きさ比べができません。そこで,次のように投げかけます。
「重ねる方法では比べられない。だから,2つの箱の大きさ比べはできないね」

子どもからは,箱を壊した大きさをそろえるという大胆な提案も生まれました・・・。1年生の発想はすごい!
子どもたちが納得した方法は,次のものでした。
「箱の中に大きさが同じものを入れればいい」
「それが何個あるかで比べればいい」

任意単位で比較するアイディアが生まれてきました。「同じ大きさ」という視点は,これまでの長さや広さの大きさ比べでも生まれてきた視点でした。よき視点が,この場面でも生まれてきました。1年生もしっかりと考えをつなげることができることが見えてきました。
さらに,ここでR子が次のように説明します。
「これは9月18日の勉強と似ています。広さを比べるとき,四角何個で調べたから,それと同じ」
 R子の気づきは,任意単位で比較するよさと視点の共通点への気づきです。数日前の学習とつなげて共通点に気づく視点の鋭さに感心しました。この気づきを時間をかけて共有していきます。

1年生でも,任意単位のよさや大きさを数で比較できるよさの共通点に気づくことができた1時間となりました。