2026年1月22日木曜日

歯車は反比例?

 2つの歯車が噛み合った場合の回転数を考える問題に取り組みました。問題に出会った当初は,比例の問題・反比例の問題とも子どもたちは全く意識をしていませんでした。

問題に取り組む中から,「歯数が増えると,回転数が減る」ことに気づいた子どもから,「反比例っぽい!」と声があがってきました。

難しい問題場面でしたが,歯数と回転数の関係を少しずつ見出していくことができました。

反比例のグラフはどうなるの?

 前回の反比例の学習で,子どもたちから生まれてきた疑問が,「反比例のグラフはどうなるの」でした。今回は,その疑問にチャレンジします。

「面積24㎠の長方形の横x㎝と縦y㎝は反比例しますか」

このように投げかけ,データを整理します。その後,グラフ化します。その前に,子どもたちに予想をさせました。

「絶対に下がるグラフ」

「上がって下がる」

「上がるのと下がるのと2本になる」

様々な予想が生まれます。そこで,実際に作図します。結果は,カーブを描く下り坂になります。問題は,x軸とy軸まで線を伸ばしてもよいのかでした。

「0×24という式はないから,xが0の時の点は存在しない」

「x×y=24の式になるから,xが0になるとあり得ない式になる」

「0.0001㎝や0.00001㎝はあっても,0㎝はない」

究極の世界を具体的にイメージ化することで,0に点は存在しないことが見えてきました。



2026年1月16日金曜日

算数教材研究大全

 授業テラス主催の「算数教材研究大全」が,2月11日(水)19時30分から開催されます。詳細は,以下をご覧ください。


算数の授業いつもその場しのぎの教材研究になってない?

どの学年も毎日ある算数の授業。毎日毎日前日に指導書を見て、教科書通りの授業になってしまう。問題も教科書に書いている物を提示するだけになり。子どもの意欲もあまりない上、主体性がなく、深い学びにつながっていない。そして教え込みの授業になってしまい、テストの点を意識した授業になってしまう。その場しのぎではダメとわかっているから教材研究をしようとするが、時間が膨大にかかってしまう。

算数の教材研究1単元に何時間とかけていませんが?

その場しのぎの教材研究にならないよう、土日や家に帰ってから、放課後などにまとめて単元計画を考えるが、どのような手順で考えたら良いかそもそもわからない。とりあえず、学習指導要領を読んで必要な明確にしたり、教科書の問題のオリジナル問題を考えたり、子供が意欲的になる仕掛けを考えたり、良い実践が他にないかネットや本で調べたり、色々していたら気づいたら5時間ほど経っていませんか?そんなに時間をかけたのに、思い通りに授業がいかないこともある。

そんな先生を救います!

今回は、算数のスペシャリストでもある尾崎先生が質の高い教材研究のやり方を解説してくれます。時短ではありません。効率よく教材研究うれば短時間で主体的、対話的で深い学びを十分に提供できます!

その学年、どの単元でも明日からみなさんの役に立つはずです!

業務の多いこの仕事。毎日ある算数の教材研究を、効率よく深いものにできるようになりましょう!

【日時】

2026年2月11日


【プログラム】

  19:20 受付
  19:30オープニング
  19:40 尾崎先生によるセミナー
  20:20   ブレイクアウトルームで交流
  20:25 交流
 20:30 クロージング

【定員】
オンライン50名(先着順)

https://funsansuu.peatix.com/event/4803622/view?utm_content=5588415&sltid=0&utm_medium=email&dlvid=5f688f35-5f3c-4e27-a035-5812b8dc5287&utm_source=follow-organizer&utm_campaign=pod-11433527

2026年1月15日木曜日

エアーホッケー!

 「円形のエアーホッケー場があります。スタートからゴールまで,何本の直線ができますか」

このように投げかけます。90°でパックを発射すると,反対側のゴールまでにできる直線は1本です。

次に子どもから「45°なら・・・」と自然に声があがります。よい反応です。ところが,45°でできる本数にズレが生まれます。2本と3本です。それぞれの子どもたちのパックの動きのイメージが異なることが原因でした。

そこで,本当は何本か実験します。すると,実験をしても「2本」「3本」と結果にズレが生まれます。その原因は,2本目の直線の発射角度の測定位置にありました。どの位置を45°とするかで,2本目の直線の軌跡が異なるのです。すると,次の声が生まれます。

「1本目の線を描いたら,回転してリセットしたらいい。そうしたら,最初の直線と同じ場所が45°になる」

「リセット」してスタート位置に回転していくことで,45°の位置を1本目と同じ位置にすることが見えてきました。このリセット方式で,再度実験を行います。結果は2本です。

すると,「比例の逆になっている」と声があがります。

「本当だ」

「角度が1/2になると,本数が2倍になっている」

「でも,比例ではないね」

「比例の逆だね」

「30°なら3本になるってことだね」

2種類にデータから,反比例の見方が生まれてきました。この見方が正しければ,30°は3本になるはずです。そこで,実験で確かめます。

結果は,予想通りの3本になりました。この見方を活用すれば,15°の場合は6本になります。この本数も実験で確かめます。

これは作図に苦労をしました。角度が少しズレると,本数が増減してしまうからです。正確に分度器を使いこなすことで,6本になることが見えてきました。

反比例の導入場面です。



2026年1月14日水曜日

8年後の答え合わせ!

 すぐに成果が見えないのが,教育という仕事の特性です。

先日,本校初等部卒業生の成人式が開催されました。初等部を卒業して8年後の子どもたちは,いや子どもではなくもう大人ですね。とても凛々しいい姿でした。

さて,彼らと話をしていて聞こえてきたのは,「小学校時代に尾﨑先生から算数を好きにさせてもらえたおかげで,高校の数Ⅲまで数学を楽しく学べました」という多くの声でした。

初等部の算数では知識・技能面だけではなく,思考力を愉しい授業を通して高めていくことをめざしていました。「すばらしいマークをもらえたことがうれしかった」という声もありました。これも,思考力が発揮された場面で与えたマークです。

初等部で学んだ学び方が,その後の子どもたちの学の姿につながっていったことを知ることができました。成人した子どもたちは,どの子もきらきらしていました!

面積はどう変わる?

次のように子どもたちに投げかけます。
「長方形の中に,三角形が入っています。長方形の横の長さと,底辺の長さは同じです。残りの三角形の頂点が,長方形の辺上を移動する時,三角形の面積はどのように変化しますか。」
長文の問題です。この問題文を読解します。頭の中のイメージにズレが生まれました。

その後,問題文と図を対応させていきます。
「面積は変わらない」
「だって,底辺と高さは同じだから」
「横に頂点が動いても,高さは変わらないから」
「底辺×高さ÷2だから,面積は同じだ」

多くの子どもが安定しています。ところがここで「変わるよ」という声が聞こえてきます。この声をきっかけに,図形を見直します。何人かの子どもたちが「変わるよ」と考えを変え始めます。
「辺上を移動すると問題文にあるから,横の辺のところ動く」
「横に行ったら,面積は小さくなる」
「高さが小さくなるから,面積も小さくなる」

ところが「辺上」の言葉を,「上の方の辺」と捉える子どもがいました。この捉えだと,長方形の上の横の辺だけを移動することになります。
「辺上」の言葉の捉えをめぐり,議論が進みます。最後は,国語辞典を使って「辺上」の意味を探っていくことで,横の辺の真上も頂点が移動していくことが見えてきました。この捉えで考えると,面積は次第に大きくなり,その後は同じ面積を維持し,再び小さくなることが見えてきました。


 

2026年1月10日土曜日

初夏に新刊本が出ます!

 今年の初夏に,明治図書から新刊が出ます。タイトルは『算数授業者に必須の技術,1冊にまとめてみた』です。昨日,最終原稿が仕上がりました。冬休みは原稿執筆と校正に費やされました・・・。いや,結構のんびりしていましたけどね。

8つの視点から,授業の必須の技術をまとめています。1年生~6年生の実践を基に解説していますので,若い先生からベテランの先生までお役に立てるのではないかと考えています。

初夏の発刊をお楽しみに!