「 1□−□=□になる式を作ろう」と投げかけます。「これじゃあ,式はできない」「真ん中の□を教えて欲しい」などと声があがります。
そこで,引く数(ア)を提示します。ア=1の場合を考えます。「式はできない」という声がありましたが,実験を行うと「10-1=9」の式があることが分かります。式は存在しました。すると今度は,「アを変えてもできる」「アが2なら式は2つできる」と声があがります。子どもたちから,アの数字を変えたいと考える前向きな見方が生まれてきました。
アに2を入れて,実験します。今度は,「11-2=9」「10-2=8」の2つの式があることが分かりました。すると「おもしろいことがある」「次は3」「アが3なら式は3」と声があります。子どもたちは,アに3を入れた時の式の数を予想し始めました。
この気持ちを,時間をかけて共有していきます。きまりを発見できるのは,一部の子どもです。そのきまりを時間をかけて共有していくことが大切です。
果たした,アが3なら式も3つできるのでしょうか。この予想については,半信半疑の子どももまだいます。そこで,実験を行います。
その結果,「12-3=9」「11-3=8」「10-3=7」と3つの式があることが分かりました。子どもたちが見つけたきまりは,一般化できそうです。その後も,ア=4の場合も実験を行います。
きまりを見つけながら,たくさんの計算も進めた1時間でした。