2024年9月15日日曜日

GAKUTOセミナー新潟開催!

 10月5日(土)新潟市の新潟テルサを会場にGAKUTOセミナーIN新潟が開催されます。講師は,私の師匠・田中博史先生と私の同志・間嶋哲先生です。教科書をベースに,どのように子どもの主体性を伸ばしていくのかを学ぶ会です。

当日は新潟でなにわ男子のコンサートやサッカーJリーグ・アルビレックスの試合があり新潟は賑わっているようです。GAKUTOセミナーでは,これら2つのイベントに負けないように盛り上げていきます!

以下のサイトから,お申し込みください。

 申込サイト
https://gakuto-sansu-seminar2024niigata.peatix.com

2024年9月14日土曜日

鹿児島に来ています!

台風接近の中,鹿児島県鹿屋体育大学を会場に大隅地区算数大会が開催されました。飛行機は飛びましたが,鹿屋体育大学近辺は強い風が吹いていました。

筑波の森本先生と2人で学級経営,授業動画公開,鹿児島の先生方からの質問コーナーと盛りだくさんの内容の研修会を行いました。長い時間でしたが,先生方は熱心に聞いてくださいました。

昼食時に,今回のタイムテーブルを変更しようと森本先生と提案しました。主催者側の先生方もすぐに柔軟に対応して下さいました。この柔軟性が,日々の授業でも大切ですね!

授業ビデオ公開は,初めて大隅地区の算数大会で取り入れたそうです。会場の先生方からも好評でした。来年も同様の企画で,大隅地区大会は開催されそうです! お楽しみに!

2024年9月13日金曜日

1〜100gで量れない

 子どもたちに次のように投げかけます。

「天秤で物の重さを量ります。使えるのは3gと10gの重りだけです。右のお皿にしか重りは載せられません」

9g,15gなどで場面のイメージかを図りました。すると,子どもたちが語り始めます。

「1g,2gは無理だね」

「5gもできない」

「素数は無理だよ」

「でも,13gは10gと3gでできるよ」

「結構できない重さが多いんじゃないかな」

そこで,1〜100gの重さの中で,測定できない重さはどれくらいあるのか実験することにしました。

実験当初は,「斜めにできないのがたくさんある」「たくさんできないね」という声が多数あがりました。ところがしばらくすると,「できないのは9個しかないよ」との声があがり始めます。

「できないのが9個しかない」を子どもたちが説明します。

「21〜30gは全部できます」

「22gなら,そこに10gたしたら32gができます。22gに20gたしたら42gができます・・・」

「26gも10gたしたら36gできます。26gに20gたしたら46gができます・・・」

「だから,10gずつたしていったら全部できます」

21g〜100gの重さが測定できる理由を,論理的に説明していくことができました。

倍数を使って問題解決の臨んだ25分間でした。本実践は,「板書シリーズ5年」東洋館出版社を参照しています。




2024年9月12日木曜日

今週末は鹿児島で算数鹿児島大会です!

今週末の14日(土)に鹿児島県鹿屋市で鹿児島県算数部会が開催されます。台風が心配されましたが,予定通り対面で開催されることが決まりました。

本大会では,私のクラスの算数授業ビデオ公開を行います。さらに,学級経営と算数の関係についても,筑波の森本先生と語り合います。

鹿児島県以外の先生の参加も可能です。以下からお申し込みください。

 R6年度 大隅地区算数部会研修会の申込みについて (google.com)



公約数を見つけるけど大変!

 子どもたちに「公約数を全て見つけよう」と投げかけます。

1問目は8と16,2問目は15と20,3問目は4と42と進んでいきます。

3問目の公約数を探しているとき,「42は大きい」「だから約数も多くなる」「大変」という声が聞こえてきました。

そこで,この声の意味を共有していきます。するとこの共有過程から,次の声が生まれてきます。

「4より大きい公約数はないから,42は全部調べなくてもいいよ」

「6,7が4の約数に出ることはないから,42は6で調べるのを止めてもいいよ」

「小さい方の数の約数まで調べたらいいんだよ」

公約数を調べるなら,小さい方の数の約数を調べれば時間短縮ができるという声です。

そこで,この考え方が一般化できるのかを10と2024,12と36で実験します。結果は,いずれも小さい方の数の約数まで調べるだけでも,公約数を見つけることができることが分かりました。

極端な数値の組み合わせに出合わせることで,効率的な求め方を考えていくことができました。



2024年9月10日火曜日

正方形を敷き詰められる?

次の問題を提示します。
「縦12㎝,横18㎝の長方形の中に合同な正方形を敷き詰めます。隙間なく敷き詰められるのは,正方形の一辺の長さが何㎝のときですか」
教科書などにもよく掲載されている教材です。問題文を見た子どもから,声があがります。
「前にやった?」
「№59と似ている。そのときは,長方形を敷き詰めて正方形を作った」
「でも今日はその反対?」
「正方形を敷き詰めたら長方形になる」
「長方形から大きくなるか,長方形から小さくなるかになっている」
正方形を敷き詰めるイメージを持つことが,やはり時間がかかりました。その後,一番大きな正方形を,実際に長方形の中に作図をして確かめます。

これらの活動の中から,「約数」「公約数」という声が聞こえてきました。正方形探しは,約数探しと同じことをしていることに気づいたのです。

最後は,一辺が1㎝,2㎝,3㎝の正方形も作図で敷き詰めてみました。すると,「模様ができた」「制服の模様に似ている」と声があがりました。本校の制服の模様は,約数からできていた?
30分ほどの授業場面でした。


 

2024年9月9日月曜日

公約数への道

次の問題を提示します。
「□枚と○枚のタイルでビルを作ります。同じ階数のビルができることはあるの?」
問題文を読んでも,イメージができない子どもがいました。そんなときに生まれてきたのが,「例えば□が3枚で○が5枚なら」という例示の声でした。

3枚でできるビルは,1階と3階です。5枚なら1階と5階です。共通するビルの階数は1階です。この具体的事例が生まれてくることで,問題文のイメージが子どもたちにもできてきました。抽象の世界を具体の世界に例示を使って置き換えて考える大切さが見えた瞬間でした。

さて,この例示の枚数を考えているとき,「それって,倍数のリズムに似ている」「トントンパンとトントントントンパンと同じだ」と声があがります。共通する場面を見つけるという視点では,公倍数探しと同じだという指摘です。よい見方が生まれてきました。
子どもから生まれた例示は,3枚と5枚でした。1階しか共通階数はありません。そうなると1階以外の階数ができるのかに子どもの興味は向かいます。
3枚と6枚なら,1階と3階が共通します。
8枚と16枚なら,1階,2階,4階,8階の4種類が共通します。

共通するビルの高さに当たる数が公約数,その中の最大の高さのビルに当たる数が最大公約数になることを教えます。

約数の学習は長方形の中に正方形を敷き詰める問題場面がよく取り上げられます。しかし,この問題場面は,子どもの実態からは大きくかけ離れています。問題場面のイメージ化もかなりハードルが高い実態外あります。そこで,前回・今回と子どもがイメージしやすいタイルを使ってビル作りという問題場面を設定してみました。


2024年9月8日日曜日

授業テラス公開授業講座,大盛況!

 昨日は私のクラスの5年生「合同な図形」の授業公開&解説セミナーを開催しました。定員を大きく上回る先生方にご参加いただきました。ありがとうございました。

元気でどんどん話し続ける子どもたちに姿に,先生方もびっくりされていたようです。授業の基本は子どもが自分の素直な思いを表出できることです。これができれば授業の30%は成功ですね。残りは教材開発と子どもの見取り,そして授業コーディネート力だと考えています。

また,算数が苦手な子どもに対する私の手立てにも感心された先生方も多くいらっしゃいました。授業はそれまで見えなかったことが見えるようにすることが目的です。これはクラス全員に見えるようにしてあげなければいけません。だからこそ,算数が苦手な子どもへの手立てが大切になってくるのです。この手立てについても,今回は具体的に解説をしていきました。

次回は半年後でしょうか。またの公開講座でお会いしましょう!

2024年9月6日金曜日

四角いビルを作ろう!

 子どもたちに,次のように投げかけます。

「正方形のタイルを使って四角いビルを作ろう」

これだけでは問題場面のイメージが難しいので,タイルが3枚の場合を実験します。できるビルは,3階と1階の2つです。四角いビルを作るので2階はできません。

次にタイルの枚数が4枚の場合を考えます。子どもたちはノートにビルの図を作図します。できたビルは,2階・1階・4階の3つです。

ここまでの結果を見た子どもから,「きまりがある」と声があがります。

「3枚から4枚にタイルが1枚増えた。ビルの種類も2つから3つに1つ増えた」

「だったら5枚なら1つ増えて4つになる」

3枚・4枚の情報から,まだ実験していない5枚のビルの種類数まで予想した声が生まれてきました。

さらに「別のことを発見した」という声も聞こえてきました。

「3枚は3階の3÷3は割れる。1階の3÷1も割れる。でも2階は3÷1で1あまり1になるから,2階のビルはできない」

「そうか,あまりが出るビルはできないんだ」

タイルの枚数を割りきれる数の階数しか四角いビルはできないという発見です。この発見を,先ほど子どもたちが場面を拡張したタイル5枚に当てはめます。5枚を割り切れる数は,5÷1,5÷5の2つです。1枚ずつ増えるきまりを使うと4つという予想でしたが,今回の発見を使うと,別の数が見えてきました。

そこで,実際にビルを作図して確かめます。完成したビルは,5階と1階です。わりきれる数しかビルはできなという発見が,この問題でも当てはまりました。

5枚のタイルの実験が終わると,また新たな発見が生まれてきました。

「3枚でできたビルの3階と1階の数をかけると,3×1で3枚に戻る」

「本当だ。すごい!」

「4枚だと,1階と4階で1×4で4。2階はそのまま2×2をしたら4枚に戻る」

「5枚も,1階と5階だから1×5で5枚に戻る」

できたビルの階数をかけると,最初のタイルの枚数に戻るという発見は,子どもたちを唸らせました。

その後,これらの発見が他のタイルの枚数にも一般化できるのかを実験します。結果は,7枚でも9枚でも6枚でも当てはまることが分かりました。

ビルができる階数は,タイルの枚数の約数になっています。ビルを考えることを通して,約数ができるパターンを子どもたちは自然に考えていた1時間の実践です。


公倍数,なんで?

次の問題を提示します。
「縦6㎝横8㎝の長方形のタイルを隙間なく並べて,正方形を作ります。タイルは何枚必要ですか」
問題場面のイメージを持たせるために,数枚のタイルを提示します。このイメージを見た子どもたちから声があがります。
「いろいろな大きさの正方形ができるんじゃない?」
「正方形はできるの?」
「公倍数を使ったらわかるよ」
「なんで公倍数なの?」
タイルを敷き詰める問題なのに,なぜ「公倍数」というワードが生まれてくるのか分からないのは当然です。
そこで,先ずはタイルをノートに作図することで本当に正方形ができるのかを確認します。結果は,縦4枚・横3枚で正方形ができることが分かりました。
正方形の具体像が見えてきたことで,公倍数が見えてきた子どもたちが増えてきました。
「縦は6㎝が12,18,24㎝と増えていく」
「横も8㎝が16,24㎝と増えていく」
「だから,24㎝が最小公倍数になって正方形ができる」
具体的な図が見えてくることで,図を使わなくても倍数を書き出していくという前時で学習した考え方が使えることが見えてきました。抽象の世界と具体の世界を往還することで,既習の学習が活用できることが見えてきた時間となりました。


 

2024年9月5日木曜日

授業公開講座満員御礼&増席決定!

 9月7日(土)19時から,私のクラスの授業ビデオ公開&授業解説講座が授業テラス主催で開催されます。定員に達しましたが,主催側から増席を決定したいうようです。ご興味のある方は,まだ間に合います! 以下からお申し込みください。

https://ozakimath20240907.peatix.com/event/4096499/view?utm_campaign=pod-11433527&utm_medium=email&utm_source=event_approaching&utm_content=5588415&dlvid=663abcaa-e88d-48c0-9aa5-a3ae5b0f5b59&sltid=0



2024年9月4日水曜日

リズム打ちの回数とチーム数を変える

 子どもたちに次のように投げかけます。

「リズム打ちの回数やチーム数を変えても公倍数は見つけられるかな?」

子どもたちは「できる!」ち自信満々です。そこで,4拍子と7拍子の回数を考えます。子どもからは「28回目で揃う」と声があがります。しかし,まだ「28」がなぜ導き出されたのか分からない子どももいます。そこで,この数が生まれた背景を尋ねます。

「前の勉強で3拍子と4拍子は3×4で12と分かった」

「だから4拍子と7拍子も4×7で28回と分かる」

前回のリズム打ちでは,拍子の回数をそのままかけ算したら,1回目に揃う場所が分かりました。その考え方を同じように当てはめたのです。既習を想起するよき学び方が育ってきました。

しかし,本当に28回目なのでしょうか。公倍数を書き出す・実際にリズム打ちを行うの2つの方法で確認します。結果は,予想通りの28回目で最初に揃いました。

ところが,この4×7という最初にリズムが揃う場所を見つける方法に対して,「いつもとは限らない」と声があがります。さらに,その考え方が当てはまらない具体的数を例示する声も聞こえてきました。

そこで,それらの声の中から3拍子と6拍子で実験を行います。そのまま計算したら,3×6で18回目が最初に揃う場所になります。しかし,公倍数を書き出したり,リズム打ちを行ったりした結果は6回目でした。

その後も,様々なリズムで実験を行います。その結果,子どもたちは「2つのリズム数が1でしかわれないときは,リズム数をそのままかければ最小公倍数が分かる」と場合分けを行うことができました。約数的な見方で,子どもたちは場合分けをしたことになります。鋭い視点が生まれてきました。

この後は,3チームの場合・4チームの場合を実験していきました。

リズム打ちのパターンを変化させていくことで,子どもたちはたくさんの公倍数をいつのまにか見つけていたことになります。



2024年9月3日火曜日

第37回小学校算数教育研究全国大会のご案内

 11月30日(土)岩手県盛岡市立仁王小学校で算数教育研究全国大会が開催されます。私は6年生の子どもたちに授業公開を行います。私の他にもこれまで一緒に算数授業の腕を競い合ってきた同士が何人も授業公開をされます。

大会の詳細,お申し込みは以下からお願いします。





2024年9月2日月曜日

リズム打ちからきまりを見つける!

クラスを2グループに分け,3拍子と4拍子のリズム打ちをしようと投げかけます。子どもたちは「音楽ですか?」と頭に?マークが浮かんでいます。

各チームで練習した後,2グループ同時にリズム打ちを行います。リズム打ちが始まりしばらくすると,両者のリズムが揃う場所がありました。「12回目だ」と回数に着目する声があがります。一方,「なんで重なるの?」という疑問の声もあがります。バラバラのリズムなのに,そのリズムが揃う場所があることが不思議なのです。

そこで,「本当に12回目に揃うの?」と投げかけます。すると「図を描いたら分かる」と声があがります。その図は,板書の中央部分のものです。この図を,全員で読解していきます。

「上は3拍子で下は4拍子のリズム」

「1,2,3・・・で12回目に×が揃う」

「次は24回目で揃う」

「だって,12回目までと同じのが,右隣にもう1セットつながるから24回目に揃う」

「その次も,もう1セットつながるから,36回目になる」

見えない12という数を,具体的な図に置き換えることで,2回目・3回目にリズム打ちが揃う場所があることも見えてきました。

この読解活動の中から「他のリズムでもできるよ」と声があがります。5拍子・3拍子で実験します。今回は図で揃う場所を確認してから,リズム打ちを行いました。子どもたちが図から見い出した15回目が,実際の実験でも確かめられました。

倍数・公倍数の導入授業の1コマです。

本授業は,手島勝朗先生の実践を参考にしています。